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SUMMARY

A situation is considered when an arbitrary number of observations in
a single block are lost accidentally from a binary block design. For this,
a lower bound to the efficiency factor of the residual design is obtained.
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1. lntroducnon

The robustness of block designs against mlssmg data has been investigated
by several authors. For an excellent review of the subject up to 1988, a reference
may be made to Kageyama [8] and for more recent references, see Dey [4].
A criterion of robustness of designs was introduced by Ghosh [6], according
to which a connected incomplete block design is robust against the loss of
t(21) observations if the residual design obtained by deleting these t
observations remains connected. Following Dey [4], in Section 2, conditions
are obtained for a block design to be robust agamst the loss of an arbitrary
number of observations in a block.

The efficiency factor of the residual design when all, or an arbitrary
number of observations are lost from a block has been studied for some
specific incomplete block designs by Srivastava, Gupta and Dey [11], Mukerjee
and Kageyama [10], Gupta and Srivastava [7], Das and Kageyama (2], Dey [4]
and Duan and Kageyama [5). In Section 3, a lower bound to the efficiency
factor of the residual design is obtained when.an arbitrary number of
observations are lost from a block of any binary block design with constant
block size, given that the original design is robust according to the criterion
of Ghosh [6]). Some applications are made in Section 4.

Throughout the paper we deal only with real matrices and vectors. Denote
an n-component vector of all unities by 1, an identity matrix of order n by
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I and an m x n matrix of all ones by J_ . J is simply denoted by J . Further,

m,m
A’, M(A), A~ and A" will respectively denote the transpose, column space
(range), a generalized inverse (g-inverse) and the Moore-Penrose inverse of a
matrix A, For the definitions of various designs used in the sequel a reference
‘may be made to Dey [3].

2. Conditions for Robustness

Let d be a connected, binary block design with v treatments and b blocks
each of size k. Suppose t (1 £t <k ) observations belonging to one of the blocks
of d are lost accidentally. Without loss of generality, let the missing observations
pertain to the first t treatments in the first block of d. Let C; (respectively,
C‘) denote the coefficient matrix of the reduced intra-block normal equations
under the design.d (respectively, the residual design, d)). Then it is not hard

to see that
Co=C+VV 2.1
where V is a v Xt matrix given by
[1,+p7,

V = -F 2.2)
(0]

) F
where B =t w/-—Ek" ~1}F=(k®&-0)2J,_  and O isa(v—k xtnull
matrix. From Theorem 1”of Dey [4], it follows that the design d is robust
against the loss. of t observations (1 <t<k) in a block if and only if
I,=V'C, V is positive definite.

Remark 2.1. We note in passing that the condition 3 (G) < M(A) in
Theorem 1 of Dey [4] is redundant. In fact, if A and B are a pair of real
symmetric nonnegative definite matrices such that A - B is also nonnegative
definite, then M (B) < M(A). This can be secen as follows : write
A = B+C, where C is symmetric nonnegative definite. Then there exist
matrices X and Y such that B=X X’ and C=Y Y’. Hence :

A=XX+YY = [XY] [’;]
which shows that A (B) = M(X X)=MX) < M(A).

The following result is not difficult to prove.
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Lemma 2.1. With V as in (2.2),

i 1,v=0
(ii -1 -1
) 1-K'J, -k, o
r — -1 . _
VvV =| x Joou . l/(k(k t)) g ,if 1<tk -1
(0] o
1!
=[Ik K O],ift=k
0] 0]

(iii) 'V V’ is idempotent for 1<t<k and

Rank (V V) = t,if 1<t<k-1
k-1, if t=k
Lif 1<t<k-1

Giv) V'V

I -k, if t=k

Since V V’ is idempotent, following Dey {4] we obtain the following
sufficient condition for the robustness of d.

Theorem 2.]. The design d is robust against the loss of
t(1 €t < k) observations in a block if the smallest positive eigenvalue of
C, is larger than unity.

As mentioned by Dey [4], the following designs satisfy the condition of
Theorem 2.1 :

(i) All balanced incomplete block designs; (ii) all group-divisible designs
with the exception of the design with parameters
v=4=b, r=k=2, m= 2=n, A, =0, A, =1; (iii) all triangular designs with

the exception of the design with parameters
v=10, b=15,r=3, k=2, A, =0, A,=1; (iv) all Latin-square type PBIB

designs  with * the exception . of L, designs with  parameters
v=st b=2s, r=2, k=s, A, =1, L, =0;(v) all PBIB designs based on partial

geometries with more than two replicates. Thus the class of designs satisfying
the condition of Theorem 2.1 is quite rich.
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3. A Lower Bound to the Efficiency Factor

In this section a lower bound to the efficiency factor of the residual design
is given when an arbitrary number of observations are lost from a block of
a connected, equi-block sized, binary block design. We restrict attention to those
designs {d} which satisfy the sufficient condition of Theorem 2.1. As a measure
of efficiency of the residual design, we take the quantity E, given by

E=1tr(Cy)/tr(C), where tr (-) stands for the trace of a square matrix. Note

that since the trace of C; (respectively, C: ) is equal to the sum of the reciprocals
of positive eigenvalues of C, (respectively, C). this measure of efficiency is
related to the well known A—efficiency criterion.

We first prove the following lemma.

Lemma 3.1. Let A be a nonnégatjve definite matrix of order v and rank
v—1 and B be a v x t matrix such that BB’ is idempotent of rank t < v. Further,
let I —B’AB and I,— A be both positive deﬁnite. Then,

wr[AB(L-B'AB) 'B'AI< Y o2/ (1-¢;)

i=1
where 1> ¢, 20,2...2¢,.. -2 ¢, _, are the positive eigenvalues of A.

Proof. Recall that if I, —D is a positive definite matrix of order n, then

,-Dy' =Y D, where D°=1_
j=0

Now,

tr[AB (L, -B'AB)Y 'B'A] = tr[B (I, - B’ AB) | B’ A?]
=tr[B Y (B'ABYB’A?]
- j=0

Let H be an orthogonal matrix such that

HBB'H L. 0
1o o
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Define B, =HBH’ and A, =HAH' Then, it is easy to see that

u[B'Z (B’ AB)’B A’] = r[B, Z (B, A, B, )’B' A}l
j=0 j=0 -

It can be seen that for a fixed j,

j
Ap

i 10
Bl (B'l AIBI)JB’l = [ o :|=C(Say)

| A A
7| Ay An

Also, it is known (see e.g., Marshall and Okin ([9], p. 248)) that if
U and V are nxn nonnegative definite (real) symmetric matrices, then

where
and A, is txt

tr(UV) < Z A (U) X, (V), where for a (real) symmetric nonnegative definite

matrix A, &, (A)>)\2(A)>...> A, (A) denote the elgenvalues of A. Applymg
this result we have
w8, Y (B A BB ATl=Y u(CAD)
j=0 . ' j=0 .
oo t )

<X E i(Ajn YA (A7)

j: 1=1

8

Z Z ~(Aj YA (A ,2 ), by the interlacing property

-T 3 nw

8

= 2 MEHBIPICH)
i=1

i=0
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=Y N AH/A- A))

i=1

The proof is completed by noting that LA = q)i' for
1=1,2,...,v-1. '

From Theorem 2 of Dey [4] we have
tr(Cl+)._= tr(Cq) + r[CyV(IL-V'CIVY vy )
where V is as in (2.2). Using Lemma 3.1 we have
r(CoV(L-VCFvY'vcy )
¥ tr (Cy )

E'!l=1

2 E/a-§)

i=1

IN

1+ =
2E .
i=1

where 1 > E 25,2....2E _ are the positive eigenvalues of C;- Recall that

since we are considering only those designs that satisfy the condition of
Theorem 2.1, we have for i=1,2,...,v— LE<1

If 8 <0, < ...=0,_, are the positive eigenvalues of C,» then
8,>1, for i=1,2,...,v~1, since the positive'eigeuvalues of C; are the
reciprocals of the positive eigenvalues of C,- We therefore have the following
result.

Theorem 3.1. A lower bound to the efficiency factor of the residual design
d, is given by

[ I
DAY (S B

i=1

E 2> |1+

v-1
et
L i=1 i

where 1< 8, < 6,<... <9

are the positive eigenvalues of C,

v—-1



EFFICIENCY UNDER THE LOSS OF OBSERVATIONS IN ABLOCK

4. Applications .

In this section specific results on the efficiency factor of the residual design
are given when an arbitrary number of observations are lost from a block in
the case of some important classes of designs. Throughout this section, we
consider only those designs that satisfy the sufficient condition of Theorem

2.1.

4.1 Balanced incomplete block designs

Let d be a balanced incomplete block (BIB) design with usual parameters
v, b, 1, k, A. For such a design one can evaluate the exact efficiency factor of
the residual design, without computing the eigenvalues of C,.

. For a BIB design the matrix C,.is given by
&

. 3
M(Iv-v'lJv)

CO:k

and hence C; =(k/(v)) (Iv—v'lJv). Now we distinguish two cases

according as 1<t<k-1 or t=k. When 1<t<k-1 we have, by letting

a=k/Gv),
r(C) = U(C3)+U[C5V(I[—_V'CBV)”.V’CB]
=w-Da
@ -V IV G-V @ -v IV V- Y]
= (v-Da+trfa®V (Il—aIt)‘l.V']. by Lemma 2.1

o2
1-a

=wv-Dao+ tr (VV’)

ot

(1-o
Plugging in the value of a and simplifying we obtain

CE= (=) W-K/{(-DOAv-K+tk}, 1<t<k-1

This expression was obtained earlier by Das and Kageyama [2] by actually
computing the eigenvalues of C.

=(v-1Do+

For t=k we have, since V'V=Ik—k'l I
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tr (Cy) = r(Cy) + r(CoV -V CEVY v Ch

= (v—1)a+a2tr[vak—avw)"V'1
= (v-Doa+od(1-a) 'wrvv),
as(-aV'Vy = (1-ay' G- (/K1)

=v-Da+a®0-a)'&-1)
Putting the value of o and simplifying gives
E=(v-1) Av-k)/{(v- 1)(Xv—k)+k(k— 1)), t=k
Once again this expression agrees with the one given by Das and

Kageyama [2]. Note that if for 1 <t <k, E, denotes the efficiency factor when
t observations in a block are lost then E, is a monotonically decreasing function

of t and E =E,_,.

4.2 Group-divisible designs

Consider now a group-divisible design with usual parameters
v=mn,b,r, kA, A, m,n The matrix C, in this case has two positive
eigenvalues, 6, ={r(k -1+A }/k with nmultiplicity v-m and
8, = vA,/k with multiplicity m — 1. It is easy to see that 6, <6, if and only
if A< A,. Observe that no singular group-divisible design can have
A, <A,, while all semi-regular group-divisible designs satisfy A, <A,. Further,
it is easy to see that for a semi-regular group-divisible design, v—m >k. For
regular group-divisible designs satisfying A <A, it is not necessary that
v—m2k, though a large number of designs listed by Clatworthy [1] do have

this property. In fact, among the regular group-divisible designs listed by
Clatworthy, there are 70 designs that satisfy A, < A, and among these 70 designs,

there are only 5 désigns for which v — m < k. These designs are R96, R134,
R136, R175 and R205. If we restrict attention to all group-divisible designs
satisfying A, <A, and v-m 2k, then one can take t<k <v-m. Letting

0, .
¥E 6, -D{(v-m)8,+(m-1)8, )
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19, (8,-1)
0, 6, - 1)

3

and using Theorem 3.1 we arrive at the following result.

Theorem 4.1. For a group-divisible design with pa}ameters v = mn, b,
r, k, A, A,, m, n satisfying A <Ay and‘v —m 2k, the efficiency factor E of
the residual design has a lower bound E; given by

E, = (1+8) ), 1<tk (4.1)

If in a group-divisible design 6, > 6, (equivalently, A, > A,), then we have
either k<m—1 or k>m— 1. For each of these cases,. results on the bound
E, are summarized below.

Theorem 4.2. For a group-divisible design with parameters
v=mn,b,1,k, A, A,,m, n, satisfying A, >}, the efficiency factor E of the

residual design has a lower bound E; given by

Eg= 1+t if ksm-1; 1St<k - (4.2)
=+ ifk>m-1, 1St<m-1 T 43)
= {(1+@-Dy+@t-m+1D Y if t=m (4.4)

Clearly, in each of the cases under Theorems 41 and 42, E; is a
monotonically decreasing function of t, as expected. The values of E, given
by Theorems 4.1 and 4.2 were computed for all group-divisible designs listed
in Clatworthy [1] for 1<t<k. Let the minimum of E; be E', ie., E’ is
the value of E, for t=k. The results of the computations show that 5 designs
have E‘<0.50,16 designs have 0.50<E*<0.70,31 designs have
0.70 < E" <0.80, 346 designs have 0.80<E'<095 and 42 designs have

E" > 0.95. This shows that only in about 12% cases, the loss in efficiency could
be 20% or more when all observations are lost in a block of a group divisible
design. '

Mukerjee and Kageyama [10] obtained lower and upper bounds on the
efficiency factor of the residual design when all observations in a block of
a regular group-divisible design satisfying X, > 0 are lost. Their upper bound

is simply (b—1)/b. A comparison of E* with the lower bound of Mukerjee
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and Kageyama shows that for 27 designs, our bound is either equal to or greater
than the Mukerjee-Kageyama lower ‘bound. The designs for which our bound
is sharper than the Mukerjee-Kageyama lower bound are: R32, R53, R74, R102,
R127, R135, R166, R168, R173, R178, R182, R187, R188, R195, R198, R204,
R206, R207 and R208.

4.3 Triangular designs

Consider now a triangular design with parameters
v=n({@-1)/2b,rk, A,X,, where n25 is an integer. The positive

eigenvalues of C, in this case are
0 =k '{n\ +n(n-3)A,/2)
and

8, =k '{2(0-D+X0-1)@-4)/2)

with respective multiplicities n—1 and n (n —3)/ 2. Thus, 8, <9, if and only
if A, >A,. From Theorem 3.1 we therefore arrive at the following result.

Theorem 4.3. (a) For a triangular design with parameters
v=n({@-1)/2,b,rkA, A, satisfying A, <A, the efficiency factor of the

residual design has a lower bound E, given by
Eg'=1+20,/8, if t <n—1

(b) For a triangular design with parameters v=n(n—1)/2, b, r, k,
A, A, satisfying A > A, the efficiency factor of the residual design has a lower

bound E; given by

Eg'=1+4219,/5, if t<n(a-3)/2 S

1+{n(@=3)(8,-6,)+26,}/8 if t>n(n—3)/2

where 8=2(n—1)62+n(11—3)()1

The values of E givén by Theorem 4.3 were computed for all the triangular

designs in the catalogue of Clatworthy [1], for 1<t<k. The design with
parameters v=10, b=15, r=3, k=2, A, =0, A, =1 was left out, as for this
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design the condition of Theorem 2.1 is 'not met. (By direct computation it is
seen that for this design E*=0.85). The results of this computation reveals
that for 34 designs, 0.50 <E"<0.70,42 designs have 0.70< E"<0.80,20
designs have 0.80 <E®<0.95 and two designs have E*> 095, where E" as
before denotes the minimum value of E. This shows that for a'large number
of triangular designs, the loss in efficiency when all observations in a block
are lost could be 20% or more.

Remark 4.1. The lower bound to the efficiency factor given by Theorem 3.1
may not always be sharp. This however is expected as no design structure has
been assumed in deriving the bound. On the other hand, the bound is applicable
to any binary equi-block sized design. )
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